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The adjoint p a r a b o l d  stability equations (BE) formulation is used to calculate the boundary layer 
receptivity to localized surface roughness and suction for compressible boundary layers. Receptivity 
efficiency functions predicted by the adjoint PSE approach agree well with results based on other nonparallel 
methods including linearized Navier-Stokes equations for both Tollmien-Schlichting waves and crossflow 
instability in swept wing boundary layers. The receptivity efficiency function can be regarded as the Green's 
function to the disturbance amplitude evolution in a nonparallel (growing) boundary layer. Given the Fourier 
transformed geometry factor distribution along the chordwise direction, the linear disturbance amplitude 
evolution for a finite size, distributed nonuniformity can be computed by evaluating the integral effects of 
both disturbance generation and linear amplification. The synergistic approach via the linear adjoint PSE for 
receptivity and nonlinear PSE for disturbance evolution downstream of the leading edge forms the basis for 
an integrated transition prediction tool. Eventually, such physics-based, high fdelity prediction methods 
could simulate the transition process from the disturbance generation through the nonlinear breakdown in a 
holistic manner. 

I. Introduction 

ransition prediction plays an important role in modem aerodynamic designs, especially, for supersonic and T hypersonic vehicles. Laminar flow control (LFC) holds great promise for reducing the skin friction drag due to 
turbulent boundary layers over the vehicle surface. A successful laminar flow design can significantly reduce the 
drag and increase the vehicle performance. Recent Defense Advanced Research Projects Agency (DARPA) and 
NASA projects have been geared towards developing LFC technologies for next-generation supersonic vehicles. 
Physics-based transition prediction is an essential building block for successful implementation of such techniques. 
Depending on the extent of the flow physics to be simulated (which, in tum, is determined by a combination of 
required accuracy and turnaround times), several prediction methods may be used. At low fidelity, the linear 
stability based N-factor method is used to assess a design concept, or in many cases, even serve as the sole 
prediction tool for design. At high fidelity, several alternatives exist to simulate the relevant stages of the intricate 
laminar turbulent transition process, from receptivity to the nonlinear breakdown to turbulence. An integrated 
transition prediction methodology thus consists of a hierarchical yet complementary set of prediction tools tailored 
to accurately simulate the flow physics involved at various stages. 

At NASA Langley Research Center, recent transition prediction related works have focused on the development of a 
physics-based, integrated transition prediction software tool box that includes a range of methods fiom the 
conventional N-factor correlation (based on either the linear stability theory (LST) or the more advanced parabolized 
stability equations (PSE) approach) to simulations based on the absolute disturbance amplitudes. The Langley 
Stability and Transition Analysis Codes (LASTRAC) software represents the first release of the integrated tool 
development [I]. The code can be used for transition-related efforts for two-dimensional (2D) or infinite swept Wing 
configurations. LASTRAC Version 2.0 extends the prediction methods for general three-dimensional boundary 
layers 121. 

Despite the popularity of the N-factor method for transition prediction, many design problems require a higher 
fidelity prediction method capable of simulating the finite amplitude of disturbances. One example is the LFC 
technique based on the spanwise periodic roughness elements (SPRE) 133. In this innovative control concept, 
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spanwise roughness elements are introduced near the leading edge in order to artificially trigger early amplification 
of a less dominant stationary crossflow disturbance. Nonlinear interaction among the triggered and other modes 
delays or, in some cases, nearly suppresses the growth of the linearly highly unstable crossflow disturbances. In 
simulating such flow configurations, receptivity of the roughness elements and nonlinear evolution of the induced 
disturbance modes represent two key elements for accurate predictions. In Ref.[4], nonlinear PSE was used to 
perform preliminary parametric studies for the SPRE control of a supersonic infinite swept wing boundary layer. A 
range of initial amplitudes of the control and other unstable stationary or traveling crossflow modes was used to 
demonstrate possible scenarios for nonlinear mode competition in the presence of a relatively large amplitude 
control mode. However, the receptivity process that determines the initial amplitudes was only briefly discussed. 

In a benign unsteady environment, stationary crossflow modes can be excited rather effectively via short-scale 
variations in surface geometry and surface suction (Choudhari and Streett [5]). When the amplitude of the wall 
variation is sufficiently small, linearized equations of motion may be used to predict the amplitudes of the generated 
crossflow instability wave (see refs.[6-71). Nonlinear effects may become important when the forcing amplitude is 
sufficiently large. Following the pioneering works by Goldstein[8] and Ruban[9] using high Reynolds number 
asymptotic theories, much of the theoretical work was focused on the finite Reynolds number extension of the 
original framework constructed based on the inhomogeneous solutions of the classical linear stability theory (e.g. 
refs.[6-7]). In these analyses, the flow is assumed to be locally parallel; therefore, a higher fidelity method is 
necessary for stability problems with significant nonparallel effects (e.g., near the lower branch of a swept wing 
boundary layer). 

b 

L 

The receptivity process in the absence of strong nonlinear effects can be completely described by solutions of a 
direct numerical simulation (DNS) or linear Navier-Stokes (LNS) equations solver. Such high fidelity simulations 
retain all the flow physics but are too expansive to be adopted as a routine design tool. Alternative approximate 
numerical solutions are also available. Prompted by design and optimization needs, the adjoint method has recently 
emerged as a viable tool for obtaining sensitivity derivatives encountered in may engineering applications. Tumin 
and Fedorov [18] and Hill[lO] formulated the receptivity problem using the adjoint system of equations derived 
from the quasi-parallel stability equations. It was shown that the adjoint formulation gives solutions that agree with 
the asymptotic or finite Reynolds number theories. To account for nonparallel effects, the adjoint PSE approach has 
also been employed for incompressible boundary layers by Herbert [ 1 11, Airiau et al.[ 121, and Collis and Dobrinsky 
[13]. Bertolotti [14] used a combination of Fourier transform and Taylor series expansion to account for the 
nonparallel terms in the receptivity formulation for a growing boundary layer. Janke [ 171 investigated receptivity 
and nonlinear development of stationary crossflow instability for several incompressible boundary layer flows 
including the low-speed swept wing experiment at Arizona State University [19]. Streett [22] and Collis and 
Lele[ 161 have demonstrated the application of linearized Navier-Stokes equations in the context of crossflow 
receptivity in incompressible and subsonic boundary layers, respectively. Jiang et al. [20-2 I ]  have presented direct 
simulations of roughness-induced excitation of both crossflow and Gortler modes in supersonic and hypersonic 
boundary layers, respectively. 

As mentioned previously, this paper is focused on the excitation of stationary crossflow disturbances via a spanwise 
periodic array of roughness elements or discrete suction holes because such configurations are being used in several 
LFC applications. Receptivity and nonlinear PSE calculations may be used in an integrated manner for parametric 
studies in these applications to ensure successful laminar flow design. Receptivity calculations also provide valuable 
insights with regard to optimal placement, spacing, and height of the roughness array. Here, this study assumes that 
the roughness height is small enough that any nonlinear surface disturbance effects are negligible. The adjoint linear 
PSE formulation is implemented as an additional module in the LASTRAC software towards the goal of seamless 
calculations of receptivity and subsequent disturbance evolution in compressible swept wing boundary layers. By 
further invoking the quasi-parallel assumption, the resulting adjoint LST formulation may also be used to obtain an 
equivalent of the finite Reynolds number theoretical solution. The next sections will discuss the formulation of the 
adjoint PSE method for localized receptivity; followed by treatment of distributed surface nonuniformities based on 
the calculated localized receptivity efficiency functions. Several test cases are presented to validate the methods and 
the computational module developed in this research. A case study for integrated transition prediction using the 
current receptivity approach is performed for LFC in a supersonic swept wing boundary layer. 

I 
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11. Theoretical and Computational Approach 

I 

For small amplitude surface disturbances, receptivity calculations associated with a localized nonuniformity provide 
the essential building block for predicting disturbance amplitudes due to arbitrary spatial distributions of surface 
nonuniformities [6]. This study only considers convective instabilities inside a boundary layer because the 
generation of absolute instabilities would require a completely different treatment. As mentioned previously. 
several theoretical methods such as the finite Reynolds number theory are available for calculating the receptivity of 
local nonuniformity. Within the framework of quasi-parallel linear stability theory, the adjoint approach provides an 
alternative formulation to the finite Reynolds number theory. To account for nonparallel effects, the adjoint method 
can be extended to the parabolized stability equations [ 11-1 31. in principle, the adjoint system of the governing 
stability equations can be derived and integrated over a domain that includes the local nonuniformity of interest. 
Then, by simple algebraic rearrangements, the receptivity efficiency function can be related to the extemal forcing 
via simple integrals that involve the regular and adjoint eigensolutions of the governing system of equations. Most 
of the existing receptivity investigations using the adjoint approach were done for incompressible flows. 
Formulation of the adjoint approach for compressible boundary layer PSE may be derived by following similar 
procedures for the incompressible boundary layers [ 12-1 31. 

Let x, y, and z denote the chordwise, wall-normal, and spanwise (or azimuthal for axisymmetric configurations) 
directions, respectively. The governing equations for the disturbance vector 4 ( 4 = (p ' ,  u', v', w', T')  , 
representing pressure, velocities, and temperature perturbations) are 

wherefrepresents the external forcing. For a 2D or infinite swept wing boundary layer, the disturbance vector of 
interest is periodic both in t and z, with o and p representing temporal and spanwise wave numbers, respectively; 
i.e., 

&x,y,z,t) = A T ( x , y ) e x p ( i [  n a d 5  + pz - w t )  (2) 
The PSE method further assumes that the streamwise wave number, a, is locally computed by adapting to the wave 
nature in the marching (x) direction. This iteratively determined streamwise wave number not only alleviates the 
grid resolution required but also reduces the errors associated with the parabolizing assumption, a key ingredient of 
the PSE approach. Within the W e w o r k  of linear theory, the disturbance amplitude A can be any constant. 
Substituting Eq. (2) into Eq. (l), and invoking usual assumptions underlying the parabolization of disturbance 
equations, the governing equations can be written in the following form: 

L & = Y  (3) 
where 7 = j j f ( z , f )  exp(i(pz - a)) & dt is the Fourier transform of the external disturbance forcing function 

and the PSE operator, L, is detined as 

L = 2 ax + E a ,, + E - v,y a,? (4) 
For convenience, the equations have been scaled such that the coefficient matrix <? involving purely viscous terms 

is independent of the wall-normal coordinate. The coefficient matrices, 2,g,E in the above equation are 
functions of all wave numbers and the mean flow. Multiplying the left-hand side of Eq. (3) by a test vector function 

and rearranging, the equation becomes 
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where the adjoint PSE operator and two additional terms on the right hand side are defined as: 

Let the test function (? satisfy the adjoint parabolized equations, Le., 

L*@ = 0 (9) 

In contrast to the original PSE, the adjoint PSE are marched from downstream to the upstream location where the 
forward PSE is initiated. Substituting Eqs.(5) and (9) into Eq. (3) yields 

In the absence of external forcing throughout the domain of interest, integration of Eq. (1 0) over a domain extending 
from x = xi to x = x1 and y = 0 to y = 00 would lead to 

This adjoint constant provides a proper normalization to the adjoint solution during the backward marching. When 
external forcing and wall or free-stream nonuniformities are present, one may choose xi and xf to be located 

upstream and downstream of the nonuniformities. For nonzero forcing, similar integration of Eq. (10) yields the 
following equation for the disturbance amplitude (as defined in Eq. (2)) due to forcing contained within the 
range(xi ,xf) :  

This equation relates the disturbance amplitude to any infield or boundary forcing via the regular and adjoint PSE 
shapefunctions. An analogous expression may be derived in the context of the adjoint LST equations by neglecting 
all nonparallel terms in Eqs. (3), (9) and (12). 

From the standpoint of receptivity theory, it is more preferable to express the disturbance amplitude defined in Eq. 
(12) in terms of the efficiency function that relates the disturbance amplitude to the Fourier geometry factor due to 
the surface nonuniformity. Hence, Eq. (2) is rewritten in the following form: 

4(x,y,z;w,P) = & X , W , P ) F ( X , Y )  e x P ( q  a d 5 + P z - W  (13) 
where E is the amplitude of the surface nonuniformity. Within the framework of the quasi-parallel receptivity theory, 
the amplitude coefficient e can be further expressed as the product of a receptivity efficiency hnction and the 
geometry factor: 

1 

The efficiency function A is independent of the geometry of the surface disturbance and depends only on the local 

profiles of the boundary layer mean flow. The geometry factor, F , represents the Fourier coefficient of the wall 
nonuniformity evaluated at the wave number pair corresponding to the instability wave of interest. The decoupling 
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of geomctry and efficiency functions was first pointed out by Goldstein in his pioneering work of 1985[8]. 
Computing the efficiency function for a given mean flow and wave number thus provides a basis for further 
predicting the disturbance amplitude associated with a surface nonuniformity of finite spatial extent. In the present 
adjoint PSE approach, once the forward and backward marching solutions are computed, the efficiency function can 
be computed by using Eq. (12) locally at each marching location. Receptivity to various types of environmental 
forcing or surface nonuniformities may be treated similarly. This paper only deals with receptivity due to surface 
admittance and roughness. For example, if receptivity to wall blowing or suction is of interest, 

4 (0) = ( pw, 0, F,,, , 0,O) and the far field contribution to B,. vanishes. Similarly, a wall roughness may be treated 

as an equivalent forcing on the velocity perturbation vector by using the Taylor series expansion. Then the 
perturbation shapefunction vector becomes 

- 

u 
I T 7  T I  T I\ where tu, Y , v t  1 is h e  mean iiow veiocity vector ana h, is the iocai Fourier transformed geometry factor of the 

roughness element. 

Numerical solutions of the efficiency function for a given nonuniformity thus consist of several steps. First, one 
must solve the regular PSE via a downstream marching until a desired downstream location is achieved. The adjoint 
PSE is then solved from that downstream location via an upstream adjoint marching until the initial chordwise 
location. The receptivity efficiency function distribution is then calculated using both the regular and adjoint PSE 
solutions together with the specified wall forcing using Eq. (1 2). The major advantage of the adjoint PSE approach 
is its efficiency compared to an LNS or DNS solver. The local receptivity efficiency functions, once obtained, may 
be used to predict disturbance amplitude for various types of geometry factors using the distributed receptivity 
formulation to be discussed in the next section. 

When the surface nonuniformities span over a sufficiently large range comparable to the wavelength of the 
instability wave, the integral effects of the local nonuniformities must be evaluated. The procedure follows that 
given by Choudhari and Streett [6]. In the presence of distributed nonuniformities, effects of both disturbance 
generation and linear amplification must be accounted for in order to determine the disturbance amplitude evolution. 
This study considers a general roughness distribution described by F(x, Z )  on the surface. For a spanwise wave 
number fl, the geometry factor of the roughness element along the chordwise direction can be computed by the 
Fourier Transform: 

F(x,P) = jF(x , z )  e-'@& (15) 
2 

--a 

Instead of Eq. (14), the amplitude coefficient for distributed receptivity can thus be expressed as: 

In Eq. (16), the coefficient 1 / & is not needed if the receptivity efficiency function is not scaled with . The 
chordwise wave number a in Eq. (1 7) refers to that of the instability wave and not the geometric characteristics of 
the wall roughness. Given the geometry of the roughness elements, the above two equations in conjunction with Eq. 
(1 3) can be used to calculate the amplitudes of the instability wave. Two aspects of the adjoint based PSE approach 
should be noted. Firstly, for a given configuration, the receptivity efficiency functions can be computed for a series 
of spanwise wave numbers (and frequencies for unsteady disturbances). These receptivity efficiency functions 
calculated can be used to determine disturbance amplitude for any given surface geometry. Secondly, the resolution 
required for the efficiency function calculation pertains to the mean flow (and thus efficiency function) variations. 
No clustering is necessary near the source of nonuniformities. The disturbance amplitude integration, Eqs. (13) and 
(1  6), can be performed with a completely different mesh in x. Proper clustering can also be added near the source 
region to improve the accuracy of amplitude predictions. 
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Alternatively, one can also use direct numerical simulations for finite-size nonuniformities. This study used a 
previously developed DNS code [20-211 for receptivity calculations in this paper. The DNS code uses 6"' order 
compact differencing in streamwise and wall-normal directions and the same scheme or Fourier discretization in 
spanwise direction depending on whether or not the basic state is a function of the spanwise coordinate. The DNS 
results provide a means of validating the accuracy of the adjoint PSE method mentioned above. For receptivity 
calculations, the linear Navier-Stokes (LNS) approach (e.g. refs. [22-231) is more efficient than the DNS. These 
direct solvers use the disk caching technique to solve a very large matrix formed by the high order discretization on 
a two-dimensional plane. With the state of the art CPU's, the turnaround time is pretty reasonable for the problem 
size pertinent to the receptivity calculations. However, in contrast to the efficiency function based prediction 
methods, calculations must be repeated when the geometry of the nonuniformities changes unless one uses the 
adjoint form of LNS equations as described in Ref. [13]. To improve the efficiency of the LNS formulation, this 
study also examines a new LNS formulation based on the existing PSE method. Let L' represent the discretized PSE 
operator which consists of the two discretized operators in x and y: 

(1 8) I L' = L: + L,, 
The streamwise derivatives in Eq. (18) are discretized by a first- or second-order backward differentiation and 
normal derivatives in L ,  are discretized with a fourth or higher order finite difference. The following equations are 

solved iteratively: 

= (L$" - ( L p ) "  (1 9) 
by multiple marching sweeps. The operator Lh, is a higher order version of L: in which the streamwise derivatives 
are discretized using either 4th order central or 3rd order upwind biased difference and the streamwise second 
derivative viscous terms are included. In contrast to the marching PSE operator, upstream influence is allowed 
in Lh, . The left-hand side operator in Eq. (1 9) is the PSE operator and can be solved by a marching procedure from 
upstream to downstream. On the other hand, the right hand side is explicitly computed and added as a source term to 
the discretized PSE. If converged, Eq. (19) reduces to a high order linear Navier-Stokes equations, i.e., 

(Lt  +L',)J = 0 (20) 
h Numerical experiments indicate that a 3rd order upwind biased scheme in L, is more robust than the 4th order central 

scheme. 

For a domain initiated by a specified shape function at the inlet, it takes only about 25-30 iterations to converge the 
L2 norm to about lo-''. One advantage of this PSE-based LNS solver is the incorporation of the streamwise wave 
number a greatly reduces the grid resolution required in x as compared to other physical space based LNS solvers. 
However, a number of receptivity problems involve a disturbance field with a broad spectrum, which implies that a 
unique c1 cannot be determined near the source region. In such cases, the spatial grid requirement becomes similar to 
the direct LNS solver, and therefore, the PSE-based LNS method may not yield significant savings in computational 
time. Nevertheless, it is still possible to incorporate a Fourier series expansion in c1 in the iterative solver to improve 
the solution accuracy without solving the full matrix. As the next section discusses, it is found that by setting the 
streamwise wave number to that of the instability wave of interest, one can still reduce the grid points required near 
the source region while adequately resolving the evolution of the eigenmode of interest. Continuous spectrum and 
other eigenmodes near the source region cannot be resolved using this approach unless sufficient grid points are 
used. 

111. Results and Discussion 

The adjoint PSE method for compressible boundary layers together with the disturbance amplitude integration for 
distributed surface nonuniformities have been implemented in the LASTRAC[ 1-21 code. For a given flow 
configuration, receptivity efficiency functions can be calculated for frequencies and spanwise wave numbers that are 
either most unstable or relevant to the disturbance environment. Once this "table" of efficiency function is 
established, the geometry factor obtained by processing the roughness or suction holes patterns on the surface can be 
used as an input for distributed receptivity calculations. Dominant instability modes from the receptivity calculations 
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can bc selected and analyzed further by using the nonlinear PSE method provided by the LASTRAC code. As an 
initial step, a loosely coupled approach of this type was deemed both more convenient and representative of the 
applications of interest. 

The following discussions validate the computational methods outlined in the previous section by comparing the 
predicted localized receptivity efficiency functions with existing results in the literature. Adjoint PSE along with 
DNS or LNS results are cross-validated for some of the examples given below. For the Mach 2.4 supersonic swept 
wing case [3-4], transition analysis begins with prescribed roughness elements distribution along the spanwise and 
chordwise directions and ends with the absolute nonlinear amplitude evolution in the downstream region. In this 
way, transition predictions are performed in an integrated manner by using several modules provided with the 
LASTRAC software. 

A. Incompressible Flat-Plate Boundary Layer 

To validate the LASTRAC receptivity module, the receptivity to unsteady suction or blowing in a Blasius boundary 
layer was computed. Mathematically, this problem is also equivalent to acoustic receptivity due to small amplitude 
variation in surface admittance. The computed efficiency function for the wall admittance versus Reynolds numbers 
is shown in Fig. 1. Both parallel (based on linear stability theory) and nonparallel (based on the adjoint PSE 
approach) results are compared with those obtained from the finite Reynolds number theory El51 in the figure. All 
three sets of results appear to agree well. It is evident that nonparallel effects are insignificant for this case as the 
adjoint LST and PSE give almost identical solutions. 

B. Incompressible Swept Hiemenz Flow 

The swept Hiemenz flow is an ideal configuration for concept study or code validation for crossflow instability in 
threedimensional (3D) boundary layers. The basic flow has a linearly varying streamwise (or equivalent to the 
chordwise direction in a swept wing boundaq layer) and a uniform spanwise velocity component in the free-stream. 
Bertolotti [ 141 used this mean flow to validate his nonparallel receptivity calculations using a method that combines 
the Fourier transform and a Taylor series expansion. A Reynolds number of R = 400 (the Reynolds number based 
on the spanwise velocity component along the attachment line and a length scale based on the velocity gradient in 
the chordwise direction at the attachment line) was chosen. Receptivity to localized wall roughness and suction is 
calculated for four different spanwise wave numbers in Ref.[l4]. Figure 2 depicts the efficiency function associated 
with wall suction for spanwise wave numbers of 0.4 and 0.8. Results for wall roughness are shown in Fig. 3 for 
spanwise wave numbers of 0.2 and 0.6. The present results obtained with the adjoint PSE or LST agree well with 
those from Ref. [14]. It is interesting to note that the adjoint PSE solutions in fact agree with the LNS solutions 
slightly better than the nonparallel results given in [14]. The results indicate that nonparallel effects are very 
significant for this mean flow. The difference in efficiency functions between parallel and nonparallel calculations 
highlights the need to use nonparallel methods such as the adjoint PSE or LNS to accurately predict disturbance 
amplitudes for crossflow instability near the leading edge. The rapid increase in efficiency function as x is 
approaching the leading edge (attachment line) is typical for crossflow instability. It is interesting to observe that 
parallel and nonparallel results are indistinguishable in this region despite their sizable difference further 
downstream. 

It should be noted that since the efficiency function is computed by using the shapefunction evolution along the 
chordwise direction, transient effects in the PSE marching process would also reflect in the computed receptivity 
efficiency functions. If receptivity efficiency calculations are of interest in the stable region upstream of the neutral 
point, a ‘‘good transient free initial shapefunction should be used. This study uses nonparallel local eigensolutions 
obtained by progressively applying local nonparallel eigenvalue search from the unstable region backward toward 
the desired upstream location. It was also found that using a shapefunction obtained slightly downstream did not 
incur strong transient effects; and therefore, the initial location can be pushed further back towards the leading edge. 
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C. Subsonic Flow past Swept Parabolic Cylinder 

Collis and Lele [16] used this geometry to investigate the receptivity of a wall roughness element to stationary 
crossflow instability. A parabolic cylinder with a leading edge radius of I",, (taken to be 1 inch in this study) was 
chosen for calculations. The sweep angle is 35 degree and the normal Mach number (perpendicular to the leading 
edge) is 0.8 and the Reynolds number based on the leading edge radius and the normal free stream velocity 
is 1 x lo5 . A spanwise periodic roughness element is placed at different chordwise locations to study the receptivity. 
A Gaussian distribution is used for the chordwise geometry factor of the roughness. The advantage of using the 
Gaussian shape is that the Fourier transform of the shape is analytically available for comparisons with the available 
finite Reynolds number based theoretical results. In addition, if the Gaussian bump is sufficiently narrow, the 
instability modal amplitude at the roughness element location can be computed by simply multiplying the local 
efficiency function computed by the adjoint PSE calculation and the analytical Fourier geometry factor. 

< 

Collis and Lele investigated the receptivity of two spanwise wave numbers ( k , =  35, 100, where kz  is non- 

dimensionalized by rn) .  This study compares only the more unstable wave number of 3 5 .  The basic flow was 
computed by using the thin-layer Navier-Stokes option of the CFL3D code [24] with a grid resolution of 301x161. 
Figures 4a and 4b compare the computed linear PSE disturbance wave number and growth rate (measured by the 
integrated total disturbance kinetic energy norm defined in Ref. [ l])  with those using LNS from Ref.[l6]. The 
agreement is quite good. The linear PSE solutions were initiated by using a nonparallel eigensolution. Evidently, no 
noticeable transient effect was present and good agreement with LNS was obtained from the very beginning. The 
corresponding quasi-parallel LST solutions are also shown in the figure. Substantial nonparallel effect is also 
apparent for this spanwise wave number. Such nonparallel effects as shown are typical of crossflow instability near 
the leading edge. 

The roughness induced stationary crossflow instability was computed by using the adjoint PSE method developed. 
For validation purpose, the receptivity was also computed by using the DNS code and linear PSE-based LNS solver 
mentioned in the previous section. Receptivity efficiency functions for k ,  = 35 were computed by the adjoint PSE 
method at all chordwise locations from very close to the leading edge to a downstream location where significant 
disturbance growth was attained. The disturbance amplitude evolution is then calculated by using the distributed 
receptivity integration, Eq. (16). In DNS and LNS, the roughness element is specified in physical space using the 
Gaussian geometry as described in Ref. [16] with a half-width parameter of ow = 0.01 (normalized by the nose 
radius). Figures 5(a) and 5(b) show the disturbance amplitude (normalized by the normal free stream velocity) 
measured by the peak chordwise velocity perturbation versus the chordwise surface distance (normalized by the 
nose radius) obtained by all three methods mentioned above for roughness elements located at two different 
chordwise locations. The spikes in the DNS and LNS solutions indicate the excitation of a broad range of waves 
near the roughness source. It should be mentioned that the PSE-based LNS calculation was performed with a 
constant chordwise wave number set at the instability eigenmode value right at the source location to relieve the 
streamwise grid resolution required. As a result, noticeable differences with DNS can be observed near the 
roughness source. However, the LNS solution quickly merges into the eigenmode not too far downstream where all 
three solutions begin to agree well among one another. These results suggest that even though continuous spectrum 
and multiple modes are present near the source, the contribution from the eigenmode of interest is the most, if not 
the only, important part that needs to be resolved in this case. The adjoint PSE solution does not contain any 
continuous spectrum or other eigenmode near the source, thus no spike is present in the amplitude evolution curve. 

The good agreement after the eigenmode has developed downstream of the source also indicates that the effective 
amplitude at the source location evaluated by extrapolation based on the linear PSE N-factor prediction using 

A ,  (4 = 4 x 1  1 exp(W)  - No ) (2 1) 
would agree among all three methods. In the above expression, linear PSE N-factor at the source location is 
indicated by N o .  The adjoint PSE amplitude evolution shown in the figure is computed by assuming a finite size 
roughness element. When the nonuniformity source is compact, one can compute the local disturbance amplitude by 
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simply multiplying the geometry factor with the local receptivity efficiency function. This study repeats the DNS 
and LNS calculations for an element width of 0.01 at several chordwise locations. Figure 6 compares the results 
with adjoint LST and PSE predictions obtained by assuming compact sources locally at each chordwise location. 
The agreement with DNS and with PSE-based LNS for sources located at x 2 2 is quite good. On the other hand, 
the quasi-parallel adjoint LST solution significantly overpredicts the disturbance amplitudes. This demonstrates the 
importance of using a nonparallel prediction method for such flow configurations. More calculations are necessary 
to clarify the PSE-based LNS accuracy at smaller x. 

To assess the source compactness assumption, the adjoint PSE calculations were repeated for several roughness 
widths at x = 1. The resulting amplitudes are shown in Fig. 7 for CT,, ranging from 0.01 to 0.2. Wider roughness 
elements are more receptive to stationary crossflow disturbances. The generated amplitude from a half-width of 0.2 
is more than an order of magnitude larger than that from 0.01. The equivalent amplitudes calculated by using Eq. 

test case show that receptivity computed by using the adjoint PSE method yield accurate amplitude predictions, 
comparable to a higher fidelity DNS or LNS calculation. In the following subsection, the adjoint PSE method is 
used for receptivity studies of two of the available swept wing experiments. 

( 2  ! 1 S~P.V t k ~ t  the C C K K I I X ~  S G W C ~  asri;;;i;:ion is valid far a ha!f-wi&\ less ihii 0. I. Nl 'u:e iesiijis presented for this 

D. Incompressible ASU Swept Wing Boundary Layer 

Janke [ 171 investigated the incompressible ASU swept wing experiment [ 191 from the perspective of receptivity and 
the SPRE based control of stationary crossflow disturbances. Finite Reynolds number theory and LNS were used in 
Ref. [ 171 for receptivity calculations. The incompressible ASU swept wing experiment was performed on a swept 
wing geometry based on the NLF (2)-0415 airfoil with an angle-of-attack of -4 degrees and a sweep angle of 45 
degrees. Janke [17] changed the angle of attack to -3.5 degree in order to better match the experimental Cp 
distribution. This study recomputed the inviscid Cp distribution by accounting for the wind tunnel wall blockage 
effect using CFL3D [24] for the installed angle-of-attack of -4 degrees. Figure 8 compares the calculated Cp 
distribution with that from the experimental data and Janke [ 171. It appears that the calculated Cp distribution does 
not match with experimental data as well as Ref. [17]. To assess the effect of different mean flow on the stability 
results, the computed linear PSE N-factor using the current mean flow is compared with that by Janke for a 
spanwise wavelength of 12 mm in Fig. 9. The agreement is good for x/c up to about 0.4. This seems to be in line 
with the difference in Cp distribution for which the slope is quite close for x/c from 0.1 to about 0.4. However, there 
exists substantial difference in Cp for x / c < 0.1 . 

Despite some agreement in the linear PSE results, the computed roughness efficiency functions shown in Fig. 10 
exhibit substantial differences. The difference in the mean flows in fact has more impact on the receptivity results. 
Exploring the effects of different Cp distributions on receptivity and stability results is beyond the scope of this 
paper. More studies are necessary to clarify the mean flow discrepancies and assess how well the current adjoint 
PSE-based receptivity approach predicts the disturbance amplitude for a given roughness configuration. 

E. Supersonic Swept wing Boundary Layers 

The ASU LFC experiments reported in [3] were conducted in the Mach 2.4 ASU 0.2-m supersonic wind tunnel. The 
swept wing model had a leading edge sweep of 73 degrees, a 0.3 meter streamwise chord at the mid-span location 
and a symmetric cross section with thickness-to-chord ratio of 4%. The free stream temperature and Mach number 
are 138 degree K and 2.4, respectively. Successll SPRE passive control was demonstrated for this configuration at 
various chord Reynolds numbers from 8 through 16.3 million [3]. This swept wing model was previously 
investigated computationally in re&. [4, 271. The highest Reynolds number case was chosen for the computations 
reported here. 

Receptivity calculations were performed for a stationary crossflow mode with a spanwise wavelength of 3 nun. 
Figure 11 shows the computed roughness-induced efficiency functions for both parallel (adjoint LST) and 
nonparallel (adjoint PSE) calculations. Although not compared in the figure, the adjoint LST results agree very well 
with previous calculations using an alternate numerical implementation of the finite Reynolds number theory [4]. It 
is also evident that the nonparallel results are close to those based on the parallel theories for x/c > 2%. Overall, 
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receptivity in the leading edge region becomes less efficient after accounting for flow nonparallclism. This trend is 
consistcnt with previous results for incompressible boundary layers [14, 171. The magnitude of nonparallel effects in 
this case is considerably less than the incompressible ASU swept wing [ 171, or the swept Hicmenz flow [ 141 cases. 
It may be a direct outcome of the larger Reynolds number in this supersonic configuration. Further studies for a 
moderate Reynolds number may help clarify this issue. 

0.01 

Before performing receptivity calculations, we first investigate the Fourier geometry factors of the roughness array 
of interest. It has been shown in our previous work [4] that the magnitude of the geometry factor varies significantly 
with the radius of the cylindrical roughness elements and there exists an “optimal” radius that would lead to a larger 
geometry factor; and in turn, more efficient excitation. We model the controlled excitation as an array of roughness 
elements with a cylindrical planform. For a roughness array located at x/c = 0.04 with a height of 6 microns and a 
spanwise spacing of 1.7 mm, we perform a discrete Fourier transform for various dot diameters. The computed 

chordwise distribution F ( x ,  p) is then used to compute the geometry factor for the dot diameter given using the 
following Fourier integral: 

N 

0.3 183 

where the exponent is defined in Eq.( 17) and the chordwise wave number is from the computed linear PSE results. 
The integration range covers the whole roughness element. Note that this geometry factor integral excludes the 
effect of the receptivity efficiency function, as can be seen by comparing with Eq. (1 6). It was created artificially as 
a quantity to measure the integral effects of the instability wave and the geometry factor given. Figure 12 depicts the 
computed geometry factor for a diameter ranging from 100 to 1200 microns. Also shown in the figure is the 
disturbance amplitudes predicted at a slightly downstream location (x/c = 0.045). Similar to the results shown in 
Ref.[4], the results indicate a double hump variation and it appears to have maxima around 350 and 800 microns. 
However, surprisingly, the disturbance amplitude generated remains monotonically increasing with the roughness 
diameter. The decrease of the roughness geometry factor between 400 and 600 does not translate into a less efficient 
disturbance generation process, although, there is a change of slope in the amplitude variation in this region to 
reflect the geometry factor variation. To view this difference more clearly, we plot in Fig. 13 the amplitude 
evolution predicted by integrating the receptivity and linear amplification simultaneously using Eqs. (1 3) and (1 6) 
for three dot diameters. All disturbance amplitudes presented herein refer to the peak chordwise velocity amplitudes 
normalized by the total free stream velocity of 565 m / s .  It clearly shows that despite the decrease in geometry factor 
when the diameter is increased from 400 to 600, the overall disturbance amplitude remains the increasing trend for a 
larger diameter. This outcome is consistent with earlier work that a spatial integral that accounts for variations in 
efficiency function and instability wavenumber across the nonuniformity must be used for a finite-size surface 
nonuniformity [26]. This is particularly true for nonuniformity distributions that lead to an oscillatory behavior of 
geometry factor as function of the element size. Non-parallel effects reduce or eliminate the destructive interference 
between instability wave contributions from different parts of the nonuniformity and, therefore, the minima 
predicted by purely localized theory are not observed as seen from Fig. 13. 

0.04 
0.05 

0.0 108 
0.0049 

I 0.02 I 0.0600 I 
I 0.03 I 0.0244 I 

Larger amplitude at a downstream location implies more effective disturbance generation at the array location. The 
disturbance amplitude generated appears to be commensurate with the receptivity efficiency function variation near 
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the leading edge. The most effective location seems to be near the attachment line. More calculations with better 
resolved mean flow near the attachment line are necessary to see if the effective amplitude decrease again very close 
to the leading edge as was observed in both Ref. [ 161 and Fig. 6 for the subsonic swept cylinder case. 

To simulate the SPRE control of the stationary crossflow instability, this study performed a series of nonlinear PSE 
calculations with initial amplitudes predicted by the adjoint PSE approach. The most amplified stationary 
disturbance appears to have a spanwise wavelength of about 3 mm. It is assumed that the control roughness elements 
array is located at x/c = 0.02 with a spacing of 1.7 mm, a diameter of 500 microns, and a cylindrical height of 6 
microns. To include the effect of the control input on the most amplified 3 mm mode by using a small number of 
terms kept in the Fourier series, the geometry factors of 1.5, 0.75, and 0.5 mm for the given roughness array were 
computed. Using these computed geometry factors in conjunction with the corresponding efficiency functions, this 
study obtains the disturbance amplitude variation shown in Fig. 14. Among all three harmonics shown, only the 1.5 
and 0.75 mm modes appear to have significantly large amplitudes to affect the most unstable crossflow mode. The 
amplitudes at x/c = 0.027 are 0.33%, 0.13% and 0.011% for the 1.5, 0.75, and 0.5 mm mode, respectively. i o  
estimate the amplitude of the 3mm mode, a geometry factor artificially generated at each chordwise direction by 
multiplying the maximum roughness height of 0.1 microns with a random number between 0 and 1 was used. The 
amplitude integration was then performed using the efficiency function for a spanwise wave length of 3 nun. By 
varying the seeding of the random number generator, various calculations were performed. The amplitudes of the 3 
mm mode at x/c = 0.027 were found to vary in the range of 1 - 3 x 1 04. A value of 3 x 1 O4 was chosen as a 
conservative estimate. Similarly, the naturally excited amplitudes of the 1.5, 0.75, and 0.5 mm modes were 
estimated to be 5 x lo4, 6 x lo4 , and 1 x iop8 , respectively. It should be noted that more reasonable estimates 
may be obtained by employing a more rigorous stochastic model for the polished wing surface. 

Nonlinear PSE calculations were performed by using a fundamental spanwise wavelength of 3 mm. Four modes, (0, 
l), (0, 2), (0, 3), and (0,4) were initiated by imposing the amplitudes predicted above and higher harmonics were 
generated via nonlinear interaction. The disturbance phase difference among the excited 1.5, 0.75, and 0.5 mm 
modes computed by the receptivity calculation (using Eqs. (13) and (16)) is retained in the nonlinear PSE 
calculations. To simulate the uncontrolled case, the amplitudes of the first four harmonics were obtained by a 
random geometry factor as described above. The resulting disturbance evolution is shown in Fig. 15 for both 
controlled and uncontrolled cases. The presence of the roughness array clearly delays the rapid growth and 
saturation of the most amplified 3mm mode. The estimates for the initial amplitudes of the (0, 2) and other higher 
modes may not reflect the true amplitude for naturally excited disturbances. If these initial amplitudes were lowered 
to 1 X lo-' , the uncontrolled disturbance evolution became that shown in Fig. 16. The rapid growth and saturation 
location moves further upstream as compared to that shown in Fig. 15. This implies that more energetic harmonic 
modes, as a matter of fact, help delay the spurt of the 3mm mode. A more reliable way to predict receptivity of 
naturally excited disturbances is necessary to have a more realistic prediction for the uncontrolled case. Both results 
indicate that reduced growth of the most amplified stationary crossflow mode can be achieved by the presence of the 
periodic array of roughness elements used in the ASU experiments. 

It was noted in the experiment that the nominal roughness diameter was designed to be 400 microns even though the 
real size was estimated to be 500  microns. To assess the effect of the size of roughness elements, the controlled case 
was repeated by using a roughness diameter of 400 and 600 microns. Figure 17 compares the modal amplitude 
variations for the most unstable (3 mm) and control (1.5 mm) modes for all three roughness diameters. The same 
initial amplitude of 3 X lo4 was used for the 3mm mode for all three calculations. A larger diameter causes the 
control mode to grow earlier near the leading edge. However, the control mode peaks at about the same level near 
the 15% chord for all three element sizes. The small difference in the control mode evolution near the leading edge 
eventually leads to substantial differences in the location of rapid rise and saturation level of the modal amplitude of 
the 3 mm mode further downstream. A larger roughness element diameter appears to move the location of rapid rise 
farther downstream but with a higher saturation amplitude. Without detailed analysis using the secondary instability 
theory ( e g  Ref.[25]), it is premature to judge the merit of a larger diameter in terms of transition location. A more 
comprehensive parametric study is necessary in order to determine whether an optimal roughness size indeed exists. 

The above calculations demonstrate that an integrated transition prediction procedure capable of accounting for the 
disturbance environment may be performed from the receptivity stage all the way up to highly nonlinear stage. For 
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stationary crossflow instability dominated configurations, further secondary instability analysis as described in[25] 
should be performed to determine the estimated transition location. 

IV. Concluding Remarks 

A localized receptivity method based on the adjoint PSE approach for compressible stability equations has been 
developed. Receptivity efficiency functions are calculated locally for wall suction or roughness elements using a 
numerically efficient marching procedure. The calculated receptivity efficiency function provides the Green’s 
function to the disturbance amplitude evolution in a nonparallel (growing) boundary layer. Given the geometry 
distribution along the chordwise direction, the linear disturbance amplitude evolution for a finite size, distributed 
nonuniformity can be computed by evaluating the integral effects of both disturbance generation and linear 
amplification. In contrast to other prediction methods in physical space such as the DNS or LNS, these tabulated 
efficiency functions may be repeatedly used to predict disturbance amplitude for any given surface nonuniformity 
configurations. 

4 

, 

This study has validated the theoretical and computational approach by comparing present results with those from 
DNS and LNS procedures. For several test configurations, the generated disturbance amplitudes computed by thc 
adjoint PSE method agree well with LNS and DNS results. Therefore, for highly nonparallel cases, such as the 
receptivity near the leading edge of a swept wing boundary layer, the adjoint PSE method should provide an 
efficient yet accurate alternative to the time-consuming LNS or DNS methods for both incompressible and 
compressible boundary layers. The adjoint PSE and the reduced LST methods have been implemented as a new 
module in the physics based advanced transition prediction tool LASTRAC. 

For the supersonic swept wing test configuration, the study used LASTRAC to demonstrate how to incorporate the 
new receptivity module in conjunction with the nonlinear PSE module to perform an integrated transition prediction. 
This procedure begins from the geometry of an array of periodic roughness elements, and ends with nonlinear 
disturbance amplitudes saturation that would eventually leads to secondary instability and transition. The absolute 
disturbance amplitude is predicted without resorting to adjustment in the disturbance level. Of course, further work 
is necessary to handle the naturally excited disturbances. The present research serves as a starting point to 
incorporate the disturbance environment information in a physics-based, high fidelity integrated transition prediction 
methodology for advanced concept studies in future aerospace vehicle design. 
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Figure 1 : Computed efficiency function magnitude for wall suction induced receptivity versus Reynolds number 
for a 2D disturbance with frequency o f F  = 0.35 x in a Blasius boundary layer. 
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Figure 2: Comparison of receptivity efficiency function due to wall suction with parallel, nonparallel, and linear 
Navier-Stokes results from Bertolottir31 for swept Hiemenz flow: (a) b = 0.4 and (b) a= 0.8.  
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Figure 5 :  Disturbance amplitude versus chordwise distance for a roughness element located at (a) x = 1 (b) x = 
4 (results computed by using adjoint PSE, DNS, and PSE-based LNS) for incompressible parabolic cylinder 
( k ,  =35). 
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Figure 6: Disturbance amplitude in response to a local 
roughness element computed by adjoint PSE, adjoint 
LST, DNS, and LNS for parabolic cylinder. 

Figure 7: Disturbance amplitude versus chordwise 
distance for roughness elements with various widths 
for parabolic cylinder. 
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Figure 8: Cp distribution for the incompressible 
ASU swept wing experiment; comparing with 
experimental data and Jade[  1 71. 
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Figure 10: Comparison of computed receptivity 
efficiency function due to wall roughness for a spanwise 
wavelength of 12 mm using adjoint LST and PSE with 
theoretical and LNS results of Jade[  171. 
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Figure 9: Comparison of the computed linear PSE N- 
factor for stationary crossflow (with a spanwise 
wavelength of 12 mm) with Jade[  171. 
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Figure 1 1 : Receptivity efficiency h c t i o n s  due to 
wall roughness computed by adjoint LST and PSE 
for the Mach 2.4 ASU experiment with a spanwise 
wavelength of 3 mm. 
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Figure 12: Geometry factor of a periodic array of 
roughness elements located at x/c = 0.04, obtained by 
Fourier transform in the chordwise and spanwise 
directions. Disturbance amplitudes behind the array 
are also shown. 

Figure 13: Disturbance amplitudes variation for a 
roughness array located at x/c = 0.04 with various dot 
diameters. 
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Figure 14: Disturbance amplitude computed by adjoint 
PSE for an array of roughness elements located at x/c = 
0.02: showing first 3 harmonics of the fundamental wave 
length of 1.5 mm. 

Figure 15: Nonlinear amplitude variation of the 3 mm 
mode with and without the input of the controlled 
modes from the results shown in Fig. 16. 
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Figure 16: Nonlinear amplitude variation of the 3 mm 
mode with and without the input of the controlled 
inputs fkom the results shown in Fig. 15 ; assuming a 
small initial amplitude for the harmonics. 
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Figure 17: Effects of roughness dot size on the 
controlled 1.5 mm mode and the most unstable 3 mm 
mode. initial amplitudes are computed by the adjoint 
PSE receptivity approach. 
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